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This paper presents a computational scheme for compressible magnetohydrody-
namics (MHD). The scheme is based on the same elements that make up many
modern compressible gas dynamics codes: a high-resolution upwinding based on
an approximate Riemann solver for MHD and limited reconstruction; an optimally
smoothing multi-stage time-stepping scheme; and solution-adaptive refinement and
coarsening. In addition, a method for increasing the accuracy of the scheme by sub-
tracting off an embedded steady magnetic field is presented. Each of the pieces of
the scheme is described, and the scheme is validated and its accuracy assessed by
comparison with exact solutions. Results are presented for two three-dimensional
calculations representative of the interaction of the solar wind with a magenetized
planet. c© 1999 Academic Press

1. INTRODUCTION

Many flows, particularly astrophysical flows, are electrically conducting, and the elec-
tromagnetic forces in these flows can be of the same order as, or even greater than, the
hydrodynamic forces. The governing equations of magnetohydrodynamics (MHD) are of-
ten used for conducting flows in which relativistic effects are unimportant and the continuum
assumption is valid. These governing equations, which basically merge the Euler equations
of gas dynamics with the Maxwell equations of electromagnetics, have long been studied
for their elegant yet complicated structure.

Solving the MHD equations computationally entails grappling with a host of issues. The
ideal MHD equations—the limit in which viscous and resistive effects are ignored—have
a wave-like structure analagous to, though substantially more complicated than, that of
the Euler equations of gas dynamics. The ideal MHD equations exhibit degeneracies of a
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type that do not arise in gas dynamics and also, as they are normally written, have an added
constraint of zero divergence of the magnetic field.

Because astrophysical flows are highly compressible, Godunov-type techniques appear
to be an attractive approach for this class of problem. Thus, beginning with the work of Brio
and Wu [1] and Zachary and Colella [2], the development of solution techniques for the ideal
MHD equations based on approximate Riemann solvers has been studied. In both of those
references, a Roe-type scheme for one-dimensional ideal MHD was developed and studied.
Roe and Balsara [3] proposed a refinement to the eigenvector normalizations developed in
the previous work, and Dai and Woodward [4] developed a nonlinear approximate Riemann
solver for MHD. Other approximate Riemann solvers were also developed by Croisille
et al.[5] (a kinetic scheme) and by Linde [6] (an HLLE-type scheme). In addition, Myong [7]
made an in-depth study of the MHD Riemann problem, and T´oth and Odstrcil [8] compared
various schemes for MHD.

One of the issues that remains to be resolved for this class of schemes for ideal MHD is
the method by which the∇ · B constraint is enforced [9]. One approach is that of a Hodge
projection, in which the magnetic field is split into the sum of the gradient of a scalar and
the curl of a vector, resulting in a Poisson equation for the scalar, such that the constraint is
enforced (see, for example, [10]). Another approach is to employ a staggered grid, such as
that used in the constrained transport technique [11]. Hybrid methods that used constrained
transport combined with a Godunov scheme have also been recently developed [12]. In the
work presented here, an alternative method is put forward. The ideal MHD equations are
solved in their symmetrizable form. This form, first derived by Godunov [13], allows the
derivation of an approximate Riemann solver with eight waves [14]. The resulting Riemann
solver, described in detail in this paper, maintains zero divergence of the magnetic field (a
necessary initial condition) to truncation-error levels, even for long integration times.

In the following sections, the governing equations are given in the form used here, and an
eight-wave Roe-type approximate Riemann solver is derived from them. A solution-adaptive
scheme with the approximate Riemann solver as its basic building block is described and
validated for several cases. In addition, a method for subtracting out an embedded steady
magnetic field is described and used in solving for the interaction of the solar wind with a
magnetized planet.

2. GOVERNING EQUATIONS

The governing equations for ideal MHD in three dimensions are statements of

• conservation of mass (1 equation)
• conservation of momentum (3 equations)
• Faraday’s law (3 equations), and
• conservation of energy (1 equation)

for an ideal, inviscid, perfectly conducting fluid moving at non-relativistic speeds. These
eight equations are expressed in terms of eight dependent variables:

• density (ρ),
• x-, y-, andz-components of momentum (ρu, ρv, andρw),
• x-, y-, andz-components of magnetic field (Bx, By, andBz),
• and total plasma energy (E),
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where

E = ρe+ ρ u · u
2
+ B · B

2µ0
. (1)

In addition, the ideal-gas equation of state

e= p

(γ − 1)ρ
(2)

is used to relate pressure and energy, and Amp`ere’s law is used to relate magnetic field and
current density.

The ideal MHD equations, in the form they are used for this work, are given below.
Vinokur [15] has carried out a careful derivation, including effects of non-idealities, that
goes beyond what is given here.

2.1. Conservation of Mass

The conservation of mass for a plasma is the same as that for a fluid, i.e.,

∂ρ

∂t
+∇ · (ρu) = 0. (3)

2.2. Faraday’s Law

In a moving medium, the total time rate of change of the magnetic flux across a given
surfaceSbounded by curve∂S is [16]

d

dt

∫
S

B · dS=
∫

S

∂B
∂t
· dS+

∮
∂S

B× u · dl +
∫

S
∇ · Bu · dS, (4)

where the third term on the right-hand side arises from the passage of the surfaceS through
an inhomogeneous vector field in which flux lines are generated. Using Stokes’ theorem,
and the fact thatE′ is zero in the co-moving frame, Faraday’s law,

− d

dt

∫
S

B · dS=
∮
∂S

E′ · dl (5)

becomes

∂B
∂t
+∇ · (uB− Bu) = −u∇ · B. (6)

The termu∇ ·B, which is typically dropped in the derivation due to the absence of magnetic
monopoles, is kept here for reasons to be discussed in Subsection 2.8.

2.3. Conservation of Momentum

Conservation of momentum in differential form is

∂(ρu)
∂t
+∇ · (ρuu+ pI) = j × B. (7)
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Under the assumptions of ideal MHD, Amp`ere’s law is

j = 1

µ0
∇ × B, (8)

whereµ0 is the permeability of vacuum. Thus, conservation of momentum for ideal MHD
can be written

∂(ρu)
∂t
+∇ · (ρuu+ pI) = 1

µ0
(∇ × B)× B. (9)

Rewriting Eq. (9), using a vector identity for(∇ × B)× B, gives

∂(ρu)
∂t
+∇ ·

(
ρuu+

(
p+ B · B

2µ0

)
I − BB

µ0

)
= − 1

µ0
B∇ · B. (10)

As with Faraday’s law, a term proportional to∇ · B is retained for reasons discussed in
Subsection 2.8.

2.4. Conservation of Energy

Conservation of hydrodynamic energy density,

Ehd = ρe+ ρ u · u
2

(11)

= p

γ − 1
+ ρ u · u

2
(12)

for a fixed control volume of conducting fluid is given by

∂Ehd

∂t
+∇ · (u(Ehd + p)) = j · E. (13)

Using Ampère’s law and the identity

E× B = (B · B)u− (u · B)B,

the j · E term can be expressed in terms ofu andB as

j · E = 1

µ0

[
B · ∂B

∂t
− (u · B)∇ · B−∇ · ((B · B)u− (u · B)B)

]
.

Finally, defining the total energy density of the plasma

E = Ehd + B · B
2µ0

(14)

= p

γ − 1
+ ρ u · u

2
+ B · B

2µ0
(15)

the energy equation becomes

∂E

∂t
+∇ ·

[(
E + p+ B · B

2µ0

)
u− 1

µ0
(u · B)B

]
= − 1

µ0
(u · B)∇ · B. (16)
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2.5. Non-dimesionalization

It is usual to non-dimensionalize the ideal MHD equations, using, for example,L (a
reference length),a∞ (the free-stream ion-acoustic speed), andρ∞ (the free-stream density).
In addition, the current and magnetic field are scaled with

√
µ0, which results in the removal

of µ0 from the equations. This non-dimensional scaled form of the equations is used from
this point on in this paper.

2.6. Quasilinear Form of Equations

For the eigensystem analysis necessary to develop the Riemann solver, it is convenient
to write the governing equations as a quasilinear system in the primitive variables,

W = (ρ, u, v, w, Bx, By, Bz, p)T . (17)

The primitive variables can be related to the vector of conserved variables

U = (ρ, ρu, ρv, ρw, Bx, By, Bz, E)T (18)

by the Jacobian matrices

∂U
∂W
=



1 0 0 0 0 0 0 0
u ρ 0 0 0 0 0 0
v 0 ρ 0 0 0 0 0
w 0 0 ρ 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

u · u
2 ρu ρv ρw Bx By Bz

1
γ−1


(19)

∂W
∂U
=



1 0 0 0 0 0 0 0

− u
ρ

1
ρ

0 0 0 0 0 0

− v
ρ

0 1
ρ

0 0 0 0 0

−w
ρ

0 0 1
ρ

0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

(γ−1)
2 u · u ku kv kw kBx kBy kBz (γ − 1)


, (20)

wherek = (1− γ ).
Collecting Eqs. (3), (6), (9), and (13), performing the non-dimensionalization, and ex-

pressing them in terms of primitive variables gives

∂W
∂t
+ (Ax,Ay,Az

) · ∇W = 0, (21)
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where

Ax =



u ρ 0 0 0 0 0 0

0 u 0 0 0
By

ρ

Bz

ρ
1
ρ

0 0 u 0 0 − Bx

ρ
0 0

0 0 0 u 0 0 − Bx

ρ
0

0 0 0 0 u 0 0 0
0 By −Bx 0 0 u 0 0

0 Bz 0 −Bx 0 0 u 0
0 γ p 0 0 0 0 0 u



Ay =



v 0 ρ 0 0 0 0 0

0 v 0 0 − By

ρ
0 0 0

0 0 v 0
Bx

ρ
0

Bz

ρ
1
ρ

0 0 0 v 0 0 − By

ρ
0

0 −By Bx 0 v 0 0 0
0 0 0 0 0 v 0 0
0 0 Bz −By 0 0 v 0
0 0 γ p 0 0 0 0 v


(22)

Az =



w 0 0 ρ 0 0 0 0

0 w 0 0 − Bz

ρ
0 0 0

0 0 w 0 0 − Bz

ρ
0 0

0 0 0 w
Bx

ρ

By

ρ
0 1

ρ

0 −Bz 0 Bx w 0 0 0

0 0 −Bz By 0 w 0 0

0 0 0 0 0 0 w 0
0 0 0 γ p 0 0 0 w


.

2.7. Divergence Form of Equations

Collecting Eqs. (3), (6), (10), and (16), and applying the non-dimensionalization, the
normalized divergence form

∂U
∂t
+ (∇ · F)T = S, (23)

may be written, whereU is the vector of conserved quantities defined by Eq. (18),F is a
flux tensor,

F =


ρu

ρuu+ (p+ B ·B
2

)
I − BB

uB− Bu

u
(
E + p+ B ·B

2

)− (u · B)B


T

, (24)
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andS is a “source” vector, containing the terms that cannot be expressed in divergence
form:

S= −∇ · B


0
B
u

u ·B

 . (25)

2.8. A Note on the∇ · B Source Term in the Divergence Form

The terms proportional to∇ · B in Eq. (23) arise solely from rewriting the magnetic-
field terms in the governing equations in divergence form. Eqution (23) (with the source
term) is exactly equivalent to Eq. (21). Although for physical fields there are no magnetic
monopoles, and the source term is therefore zero, dropping the source term from the analysis
changes the character of the equations. This has been pointed out previously by Godunov
[13]. He found that the ideal MHD equations written in pure divergence form (i.e., Eq. (23)
withoutthe source term) are not symmetrizable. He further found that the system could be
rendered symmetrizable only by adding a factor of the constraint∇ · B = 0 to each of the
equations, and that the resulting symmetrizable form was that of Eq. (23)with the source
term.

Symmetrizable systems of conservation laws have been studied by Godunov [17] and
Harten [18], among others. One property of the symmetrizable form of a system of conser-
vation laws is that an added conservation law

∂(ρs)

∂t
+ ∂(ρus)

∂x
+ ∂(ρvs)

∂y
+ ∂(ρws)

∂z
= 0

for the entropys can be derived by multiplying each equation in the system by a factor
and adding the resulting equations. For the ideal MHD equations, as for the gasdynamic
equations, the entropy iss= log(p/ργ ). Another property is that the system is Gallilean
invariant; all waves in the system propagate at speedsu± c (for MHD, the possible values
of c are the Alfvén, magnetofast, and magentoslow speeds, described below). Neither of
these properties holds for the MHD system if the source term is ignored.

Eq. (21), or Eq. (23)with the source term, yields the following evolution equation
for ∇ · B:

∂

∂t
(∇ · B)+∇ · (u∇ · B) = 0. (26)

This is a statement that the quantity∇ ·B/ρ satisfies the equation for a passively convected
scalarφ, i.e.,

∂

∂t
(ρφ)+∇ · (ρuφ) = 0. (27)

Thus, for a solution of this system, the quantity∇ · B/ρ is constant along particle paths
and therefore, since the initial and boundary conditions satisfy∇ · B = 0, the same will be
true for all later times throughout the flow. The only ambiguity arises in regions which are
cut off from the boundaries, i.e., isolated regions of recirculating flow. These can occur in
three-dimensional flow fields and do in some of the cases that have been run. In practice,
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these regions do not lead to numerical difficulties. This may be due to the fact that, in
a numerical calculation, these regions are not truly isolated from the outer flow, due to
numerical dissipation. Thus, although not connected to the outer flow via a streamline, the
magnetic field inside the recirculating region must be compatible with that of the outer flow.
This remains to be proven, however.

The downside of the solving the equations in the form given in Eq. (23) is, of course, that
they are not strictly conservative. Terms of order∇ · B are added to what would otherwise
be a divergence form. The danger of this is that shock jump conditions may not be correctly
met, unless the added terms are small, and/or they alternate in sign in such a way that the
errors are local, and in a global sense cancel in some way with neighboring terms. This
downside, however, has to be weighed against the alternative; a system (i.e., the one without
the source term) that, while conservative, is not Gallilean invariant, has a zero eigenvalue
in the Jacobian matrix, and is not symmetrizable.

The approach taken in this paper is therefore to solve the equations in their symmetrizable
form, i.e., the form of Eq. (23). As shown previously [14], this form of the equations allows
the derivation of an eight-wave approximate Riemann solver that can be used to construct an
upwind solution scheme for multi-dimensional flows. The elements of the solution scheme
are described in the following section.

3. ELEMENTS OF SOLUTION SCHEME

3.1. Overview of Scheme

The scheme described here is an explicit, solution-adaptive, high-resolution, upwind
finite-volume scheme. In a finite-volume approach, the governing equations in the form of
Eq. (23) are integrated over a cell in the grid, giving

∫
cell i

∂U
∂t

dV +
∫

cell i
∇ · F dV =

∫
cell i

SdV (28)

dUi

dt
Vi +

∮
∂(cell i)

F · n̂ dS= Si Vi , (29)

whereUi andSi are the cell-averaged conserved variables and source terms, respectively,
Vi is the cell volume, and̂n is a unit normal vector, pointing outward from the boundary
of the cell. In order to evaluate the integral, a quadrature scheme must be chosen; a simple
midpoint rule is used here, giving

dUi

dt
Vi +

∑
faces

F · n̂ dS= Si Vi , (30)

where theF · n̂ terms are evaluated at the midpoints of the faces of the cell. The source term
Si is proportional to the volume average of∇ · B for a cell. That average is computed by

∇ · Bcell i = 1

Vi

∑
faces

B · n̂ dS;
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the equation to be integrated in time is therefore

dUi

dt
Vi +

∑
faces

F · n̂ dS= −


0
B
u

u · B


i

∑
faces

B · n̂ dS. (31)

The evaluation ofF · n̂ at the interface is done by a Roe scheme for MHD, as described in
Subsection 3.5. Other approximate Riemann solvers have been used in the code described
here, including an MHD version of the HLLE scheme [6]. These solvers are all based on the
eigensystem of the symmetric equations, described in Subsection 3.5. The time-integration
scheme for Eq. (30), the solution-adaptive technique, and the limited reconstruction tech-
nique that makes the scheme second order in space are also described in the following
sections.

3.2. Grid and Data Structure

The grid used in this work is an adaptive Cartesian one, with an underlying tree data
structure. The basic underlying unit is a block of structured grid of arbitrary size. In
the limit, the patch could be 1× 1× 1, i.e., a single cell; more typically, blocks of any-
where from 4× 4× 4 cells to 10× 10× 10 cells are used. Each grid block corresponds to a
node of the tree: the root of the tree is a single coarse block of structured grid covering
the entire solution domain. In regions flagged for refinement, a block is divided into eight
octants; in each octant,1x, 1y, and1z are each halved from their value on the “parent”
block. Two neighboring blocks, one of which has been refined and one of which has not,
are shown in Fig. 1. Any of these blocks can in turn be refined, and so on, building up
a tree of successively finer blocks. The data structure is described more fully elsewhere
[19]. The approach closely follows that first developed for two-dimensional gas dynamics
calculations by Bergeret al. [20–22].

This block-based tree data structure is advantageous for two primary reasons. One is the
ease with which the grid can be adapted. If, at some point in the calculation, a particular
region of the flow is deemed to be sufficiently interesting, better resolution of that region
can be attained by refining a block, and inserting the eight finer blocks that result from
this refinement into the data structure. Removing refinement in a region is equally easy.
Decisions as to where to refine and coarsen are made based on comparison of local flow
quantities to threshold values. Refinement criteria used in this work are local values of

εc = |∇ · u|
√

V

εr = |∇ × u|
√

V (32)

εt = |∇ × B|
√

V .

These represent local measures of compressibility, rotationality, and current density.V is
the cell volume; a scaling of this type is necessary to allow the scheme to resolve smooth
regions of the flow as well as discontinuous ones [23].

Another advantage of this approach is ease of parallelization: blocks of the grid can easily
be farmed out to separate processors, with communication limited to the boundary between
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FIG. 1. Example of neighboring refined and unrefined blocks.

a block and its parent [24, 19]. The number of cells in the refinement blocks can be chosen
so as to facilitate load balancing; in particular, an octant of a block is typically refined, so
that each block of cells in the grid has the same number of cells [19].

3.3. Limited Linear Reconstruction

In order for the scheme to be more than first-order accurate, a local reconstruction must
be done; in order for the scheme to yield oscillation-free results, the reconstruction must be
limited. The limited linear reconstruction described here is due to Barth [25]. A least-squares
gradient is calculated, using the cell-centered values in neighboring cells, by locally solving
the following non-square system for the gradient of thekth component of the primitive
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variable vectorW by a least-squares approach

L∇W(k) = f (33)

L =

1x1 1y1 1z1
...

...
...

1xN 1yN 1zN

 , f =


1W(k)

1
...

1W(k)
N

 , (34)

where

1xi = xi − x0

1yi = yi − y0

1zi = zi − z0

1W(k)
i = W̄(k)

i − W̄(k)
0

and the points are numbered so that 0 is the cell in which the gradient is being calculated,
andi is one ofN neighboring cells used in the reconstruction.

The gradients calculated in this manner must be limited in order to avoid overshoots.
A typical choice is a limiter due to Barth [25]. The reconstructed values are limited by a
quantityφ(k) in the following way

W(k)(x) = W̄(k) + φ(k)(x− x̄) · ∇W(k), (35)

whereφ(k) is given by

φ(k) = min

(
1,

∣∣W̄(k) −maxneighbors
(
W̄(k)

)∣∣∣∣W̄(k) −maxcell
(
W(k)

)∣∣ ,

∣∣W̄(k) −minneighbors
(
W̄(k)

)∣∣∣∣W̄(k) −mincell
(
W(k)

)∣∣
)
. (36)

In the above,W̄(k) is the value of thekth component ofW at a cell center̄x, the subscript
neighborsdenotes the neighboring cells used in the gradient reconstruction, and the subscript
cell denotes the unlimited (φ= 1) reconstruction to the centroids of the faces of the cell.

At the interfaces of blocks that are at different refinement levels, states are constructed in
two layers of “ghost cells” so that the interface is transparent to the reconstruction described
above. Since refinement level differences of greater than one are not allowed, there are only
two types of ghost cells: those created for a coarse block from values on a neighboring finer
block, and those created for a fine block from values on a neighboring coarser block. A
simple trilinear interpolation is used to construct the values in the ghost cells.

3.4. Multi-stage Time Stepping

The time-stepping scheme used is one of the optimally smoothing multi-stage schemes
developed by Van Leeret al. [26]. The generalm-stage scheme for integrating Eq. (30)
from time-leveln to time-leveln+ 1 is

U(0) = Un (37)

U(k) = U(0) + αk1tR
(
U(k−1)

)
, k = 1 · · ·m (38)

U(n+1) = U(m), (39)
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where

R = Si − 1

Vi

∑
faces

F · n̂ dS.

The multi-stage coefficientsαk and the associated time-step constraint are those that give
optimal smoothing of high-frequency error modes in the solution, thereby accelerating con-
vergence to a steady state [27]. Typically, the two-stage optimal second-order scheme is used.
For this scheme,α1= 0.4242,α2= 1.0, and the corresponding CFL number used to choose
1t is 0.4693. This approach is, of course, only used when steady-state solutions are desired;
for unsteady problems, the second-order in time two-step scheme (α1= 0.5, α2= 1.0) is
used.

3.5. Approximate Riemann Solver

An approximate Riemann solver is used to compute the interface fluxes needed for the
finite-volume scheme of Eq. 30. A Roe scheme is used here; it is based on the eigensystem
of the matrix

An = (Ax,Ay,Az) · n̂, (40)

whereAx, Ay, andAz are the matrices in the quasilinear form of the equations (Eq. (21))
and n̂ is the normal to the face for which the flux is being computed. For simplicity, the
derivation is done here for̂n= x̂; results for an arbitrarily aligned face can be obtained by
use of a simple rotation matrix.

3.5.1. Eigensystem of the governing equations.For the matrixA · x̂, there are eight
waves, with their corresponding eigenvaluesλ, left eigenvectorsl , and right eigenvectors
r . The eigenvalues are:

• λe= u, corresponding to an entropy wave;
• λd= u, corresponding to a magnetic-flux wave;
• λa= u± Bx/

√
ρ, corresponding to a pair of Alfv´en waves; and

• λ f,s= u± cf,s, corresponding to two pairs of magneto-acoustic waves.

The magneto-acoustic speeds are given by

cf,s =

√√√√√1

2

γ p+ B · B
ρ

±
√(

γ p+ B · B
ρ

)2

− 4
γ pB2

x

ρ2

.
The eigenvectors corresponding to these waves are unique only up to a scaling factor.

A suitable choice of scaling is given by Roe and Balsara [3]; that choice was used in the
current work. (Recently, Barth [28] introduced a scaling that is slightly better conditioned.)
The scaled version of the eigenvectors comes from defining

α2
f =

a2− c2
s

c2
f − c2

s

, α2
s =

c2
f − a2

c2
f − c2

s

(41)

and

βy = By√
B2

y + B2
z

, βz = Bz√
B2

y + B2
z

. (42)
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The scaled eigenvectors are:
Entropy,

λe = u

le =
(

1, 0, 0, 0, 0, 0, 0,− 1

a2

)
(43)

re = (1, 0, 0, 0, 0, 0, 0, 0)T .

Magnetic Flux,

λd = u

ld = (0, 0, 0, 0, 1, 0, 0, 0) (44)

rd = (0, 0, 0, 0, 1, 0, 0, 0)T .

Alfvén,

λa = u± Bx

ρ

la =
(

0, 0,− βz√
2
,
βy√

2
, 0,± βz√

2ρ
,∓ βy√

2ρ
, 0

)
(45)

ra =
(

0, 0,− βz√
2
,
βy√

2
, 0,±

√
ρ

2
βz,∓

√
ρ

2
βy, 0

)T

.

Fast,

λ f = u± cf

l f =
(

0,±α f c f

2a2
,∓ αs

2a2
csβy sgnBx,∓ αs

2a2
csβz sgnBx, 0,

αs

2
√
ρa
βy,

αs

2
√
ρa
βz,

α f

2ρa2

)
(46)

r f = (ρα f ,±α f c f ,∓αscsβy sgnBx,∓αscsβy sgnBx, 0,

αs
√
ρaβy, αs

√
ρaβz, α f γ p)T .

Slow,

λs = u± cs

ls =
(

0,±αscs

2a2
,± α f

2a2
cf βy sgnBx,± α f

2a2
cf βz sgnBx, 0,

− α f

2
√
ρa
βy,− α f

2
√
ρa
βz,

αs

2ρa2

)
(47)

rs = (ραs,±αscs,±α f c f βy sgnBx,±α f c f βz sgnBx, 0,

−α f
√
ρaβy,−α f

√
ρaβz, αsγ p)T .
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The eigenvectors given above are orthonormal, and, sinceα f , αs, βy, andβz all lie bet-
ween zero and one, the eigenvectors are all well-formed, once these four parameters are
defined. The only difficulties in defining these occur whenB2

y + B2
z = 0, in which case

βy andβz are ill-defined, and whenB2
y + B2

z = 0 and B2
x = ρa2, in which caseαs andα f

are ill-defined. The first case is fairly trivial;βy andβz represent direction cosines for the
tangential component of the B-field, and in the case of a zero component, it is only important
to choose so thatβ2

y +β2
z = 1. The choice used here is the same as that proposed by Brio

and Wu [1],

βy = 1√
2
, βz = 1√

2
. (48)

An approach for the case in whichαs andα f are ill-defined is outlined by Roe and Balasara
[3]. No special treatment of this type was needed for the cases shown in this paper. Indeed,
it is shown in [3] that although the linearized Riemann problem has multiple solutions in
this case, they all give the same value for the interface flux.

3.5.2. Construction of the flux function.The flux function used in this work is defined
in the manner of Roe [29] as

F · n̂(UL ,UR) = 1

2
(F · n̂(UL)+ F · n̂(UR))−

8∑
k=1

L k(UR− UL)|λk|Rk, (49)

wherek is an index for the loop over the entropy, divergence, Alv´en, magneto-acoustic
waves. The conservative eigenvectors are

L k = lk
∂W
∂U

(50)

Rk = ∂U
∂W

rk. (51)

In Eq. (49), the terms denoted with subscriptsL and R are evaluated from the face-
midpoint states just to the left and right of the interface, as determined by the limited linear
reconstruction procedure described above. The eigenvalues and eigenvectors are evaluated
at an “interface” state that is some combination of theL and R states. For gas dynamics,
there is a unique interface state (the “Roe-average state”) that Roe has shown exhibits certain
desired properties [29]. For MHD, while some interesting work has been done on finding
an analogous state for MHD (see, for example, [30]), a unique, efficiently computable
Roe average is still elusive. In this paper, a simple arithmetic averaging of the primitive
variables is done to compute the interface state. Vector variables (velocity, magnetic field)
are averaged component by component.

If a so-called “entropy fix” is not applied to Roe’s scheme, expansion shocks can be
permitted [31]. The entropy fix is applied to the magnetosonic waves to bound those eigen-
values away from zero when the flow is expanding. This is done by replacing|λk| in Eq. (49)
with |λ∗k| (for the values ofk corresponding to the magnetoacoustic waves only) where|λ∗k|
is given by

|λ∗k| =
{ |λk|, |λk| ≥ δλk

2

λ2
k

δλk
+ δλk

4 , |λk|< δλk
2 ,

(52)
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where

δλk = max(4(λk R− λkL), 0).

4. SOLVING FOR FLOWS WITH EMBEDDED STEADY FIELDS

For problems in which a strong “intrinsic” magnetic field is present, accuracy can be
gained by solving for the deviation of the magnetic field from this intrinsic value. For
example, in the interaction of the solar wind with a magnetized planet such as earth, the
planetary magnetic field, a strong dipole, dominates the magnetic-field pattern near the
earth. Solving for the perturbation from the dipole field is inherently more accurate than
solving for the full field, then subtracting off the dipole field to calculate the perturbation.
This approach, first employed by Tanaka [32], is derived below for the scheme presented in
this paper. The derivation here is for a non-rotating body; the technique can be generalized
for rotating objects.

Given an “intrinsic” magnetic field,B0, that satisfies

∂B0

∂t
= 0

∇ · B0 = 0 (53)

∇ × B0 = 0,

the full magnetic fieldB may be written as the sum of the intrinsic field and a deviationB1,
i.e.,

B = B0+ B1. (54)

Nothing in the following analysis assumes thatB1 is small in relation toB0.
Primitive and conservative state vectors based on the perturbation field may be defined

as

W1 = (ρ, u,B1, p)T

and

U1 = (ρ, ρu,B1, E1)
T ,

where

E1 = p

γ − 1
+ ρ u · u

2
+ B1 · B1

2
.

Rewriting Eq. (23) in terms of this perturbed state, making no assumptions other than those
of Eq. (53), gives

∂U1

∂t
+ (∇ · F1)

T + (∇ ·G)T = S1, (55)
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where

F1 =


ρu

ρuu+ (p+ B1 ·B1
2

)
I − B1B1

uB1− B1u

u
(
E1+ p+ B1 ·B1

2

)− (u · B1)B1


T

, (56)

S1 = −∇ · B1


0
B
u

u · B1

 (57)

and

G =


0

(B0 · B1)I − (B0B1+ B1B0)

uB0− B0u

(B0 · B1)u− (u · B1)B0


T

. (58)

The quasilinear form of this split system has exactly the same eigenvalues and primitive
eigenvectors as in Subsection 3.5. The flux function for the split system therefore differs from
that of the original, non-split system only in that the Jacobian matrices relating primitive to
conservative variables differ from those of the non-split scheme. Thus, for the split scheme,
the flux function is

F1 · n̂
(
U1L ,U1R

) = 1

2

(
F1 · n̂

(
U1L

)+ F1 · n̂
(
U1R

))− 8∑
k=1

L1k

(
U1R −U1L

)|λk|R1k , (59)

where the conservative eigenvectors for the split system are

L1k = lk
∂W1

∂U1
(60)

R1k =
∂U1

∂W1
rk (61)

and

∂U1

∂W1
=



1 0 0 0 0 0 0 0
u ρ 0 0 0 0 0 0
v 0 ρ 0 0 0 0 0
w 0 0 ρ 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

u · u
2 ρu ρv ρw B1x B1y B1z

1
γ − 1


(62)
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∂W1

∂U1
=



1 0 0 0 0 0 0 0

− u
ρ

1
ρ

0 0 0 0 0 0

− v
ρ

0 1
ρ

0 0 0 0 0

−w
ρ

0 0 1
ρ

0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

(γ − 1)
2 u · u ku kv kw kB1x kB1y kB1z (γ − 1)


, (63)

wherek= (1− γ ).

5. VALIDATION OF SCHEME

For the purposes of validation and accuracy assessment, smooth and non-smooth prob-
lems with exact solutions were simulated with the method presented in this paper, and the
computed solutions for several grids were compared with the exact solutions. The results
of the validation runs are presented here.

5.1. Attached Oblique Shocks

Two oblique shock cases were studied: in one, the magnetic field and velocity vectors
upstream of the shock are taken to be parallel; in the other, they are perpendicular to each
other. For both cases, the acoustic Mach numberM = 5, the Alfvén numberMA= 5, and
γ = 5/3 were taken as the upstream conditions. For both cases, flow past a wedge was
computed by the method presented in this paper. The problem is depicted in Fig. 2. Shock
polars (i.e., plots of post-shock vertical versus post-shock horizontal velocity components)
were constructed by varying the wedge angle and plotting the downstreamVx versus down-
streamVy for several wedge angles with the two upstream conditions. Exact shock polars
were computed by iteratively solving the appropriate MHD Rankine–Hugoniot relations.
Figure 3 is a plot of the exact (solid lines) and computed (symbols) shock polars for the two
cases. As is clear from the plot, the agreement is excellent.

In order to assess order of accuracy of the method for non-smooth flows, a single case
(M = 5, MA= 5, 10◦ wedge, upstream magnetic field, and velocity parallel) was run on a

FIG. 2. Setup of oblique-shock validation case.



A SOLUTION-ADAPTIVE UPWIND SCHEME FOR MHD 301

FIG. 3. Computed and exact shock polars.

sequence of successively finer uniform grids. Limited reconstruction was turned off, so the
expectation is of first-order accuracy. Relative errors were calculated in anL1 norm defined
as

Lη1 =
1

N

N∑
i=1

∣∣δηi ∣∣,
whereδn

i is the relative error in celli of some quantityη. For example, relative errors of
pressure and magnetic field magnitude are

δ
p
i =

pi − pexact

pexact
(64)

δB
i =

Bi − Bexact

Bexact
. (65)

To assess the ability of the scheme to maintain∇ · B= 0, the relative error

δh∇ ·B
i =

∫ ∫
cell i Bn ds∫ ∫

cell i |Bn| ds

was calculated, whereBn is the component of the magnetic field normal to a cell face,
computed by averaging the values at the cell centroids to the “left” and “right” of the face
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FIG. 4. Grid convergence for oblique-shock validation case.

centroid. This error is denoted ash∇ ·B because it scales as∣∣δh∇ ·B
i

∣∣ ∝ V |∇ · B|
A|B| ,

whereV is the cell volume andA is the cell surface area; the ratioV/A goes as the mesh
spacingh.

Figure 4 shows grid-convergence results for pressure, magnetic-field magnitude, and
divergence of magnetic field. The tabulated values are shown in Table I. Both the plot
and the table show an imputed order of accuracy of one, as expected. In addition, it is
interesting to note that the error inh∇ ·B not only converges at the same rate as the error

TABLE I

Grid Convergence for Oblique-Shock Validation Case

L p
1 L B

1 Lh∇ ·B
1 Resolution

0.2022690 0.1072600 0.00301172 1/16
0.130427 0.0700573 0.00143521 1/32
0.0789827 0.0422129 0.000676634 1/64
0.0449624 0.0239818 0.00032158 1/128
0.0242786 0.0131832 0.000155886 1/256
0.0127462 0.00727291 0.0000766793 1/512
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FIG. 5. Structure of∇ ·B truncation error—magnified view of a portion of a captured shock.

in other variables, it is on each grid more than an order of magnitude lower than the error
in the magnetic field. The bad news here is that, sinceh∇ ·B is first order,∇ ·B itself is
constant with grid refinement. However, this is, perhaps, to be expected. For any oblique
discontinuity, the three terms comprising∇ ·B will each be non-zero and of order 1/h,
and will not cancel perfectly. Since, as can be seen from examining the multi-stage scheme
(Subsection 3.4), the term added in updating the conserved variables is proportional to
1t∇ ·B, and1t ≈ h (from the CFL condition), comparing theh∇ ·B term to the relative
error in the magnetic field itself is appropriate.

It is also interesting to note the structure of the∇ ·B errors. The only non-zero values are
in the vicinity of the shock. Figure 5 shows contours of∇ ·B in the vicinity of the shock;
positive values are denoted by solid countrours; negative values are denoted by dashed
contours. The extent of the contours of non-zero divergence is less than five cells across,
typical of numerical oblique shock structures.

As can be seen, the∇ ·B that is created numerically does not appear as isolated magnetic
monopoles; any positive∇ · B that is created is paired with a negative contribution. This
plot, and the fact that the far-field boundary conditions are divergence-free, suggest a “tele-
scoping” property: integration of∇ ·B over successively larger control volumes should lead
to successively smaller values. Define

6∇·B =
N∑

i=1

∣∣∣∣∫ ∫
control volume i

Bn ds

∣∣∣∣ ,
whereN is the number of control volumes into which the grid is divided. This telescoping
property can be studied by taking succesively larger control volumes for the same solution.
In Table II the quantity6∇·B is reported for successively larger control volumes: level 9
corresponds to taking each cell in the grid as a control volume, level 8 to a control volume
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TABLE II

Telescoping of Magnetic-Field Divergence on a Set of Consecutively Coarsened Grids

Level 9 8 7 6 5 4 3 2 1

6∇ ·B× 105 1.670 1.569 1.220 0.846 0.543 0.373 0.234 0.028 0.011

consisting of eight control volumes from level 9, and so on up to level 1, where the control
volume is the entire computational domain.

5.2. Weber–Davis Flow

Weber–Davis flow is a smooth solution to the ideal MHD equations approximating the
solar wind in the equatorial plane of the interplanetary medium [11]. While a complete
analytic solution for this flow does not exist, certain quantities, including

8M = ρvr r
2 (66)

8B = Br r
2 (67)

are invariant. Thus, the method presented in this paper can be validated by calculating the
degree to which8M and8B remain constant. TheL2 norms of the relative errors in8B,
8M , and magnetic-field divergence are plotted in Fig. 6 and Table III for various levels of

FIG. 6. Grid convergence for Weber–Davis test case.
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TABLE III

Various Levels of Grid Resolution

L
8M
2 L

8B
2 Lh∇ ·B

2 Resolution

0.0314475 0.042268 0.0030893 1/16
0.0087872 0.0134876 0.000889703 1/32
0.00190635 0.0039304 0.000164449 1/64
0.000444465 0.00098265 0.000029798 1/128

grid resolution; the results show second-order accuracy. Again, as in the non-smooth flow,
the divergence error is more than an order of magnitude smaller than the errors in other
variables.

6. SOLAR-WIND/MAGNETIZED PLANET INTERACTION RESULTS

Results are presented here for the interaction of the solar wind—a mixture of electrons,
protons, helium atoms, and minor ions—with a magnetized sphere representative of Earth.
This problem is a rather comprehensive test of the method described in this paper. An
incoming flow that has a background magnetic field associated with it—the interplanetary
magnetic field IMF—interacts with the magnetic dipole associated with Earth. The resulting
flow field is a complicated balance of thermal, kinetic, and magnetic effects.

In the simulations presented here, the incoming solar wind is modeled as a 400 km/s flow
with a density of 5 molecules/cm3, an ion-acoustic speed of 50 km/s and a magnetic field
strength of 10−8 Tesla. In the first case, the magnetic field is northward; in the second it
is southward. The earth is modeled as a magnetic dipole of strength 3× 10−5 Tesla× R3

E,
whereRE is the radius of the earth. The numerical boundary conditions are free-streaming
solar wind conditions on all external boundaries, and at a sphere of radius 3RE, the following
(non-dimensional) conditions are applied

ρ = 1, u = 0, Br = 0, p = 8. (68)

A Neumann condition is applied on the other two components of the magnetic field.
Figures 7 and 8 show the converged steady-state solution for a strongly northward in-

terplanetary magnetic field (IMF). The magnetic-field vector in the free-streaming solar
wolar wind is antiparallel to the terrestrial magnetic dipole moment, consequently the
z-components of the dipole field lines and the IMF are parallel. Such a situation repre-
sents fairly extreme interplanetary field conditions (Bz is too large), but it demonstrates the
“closed magnetosphere” solution. Figure 9 shows the thermal pressure (color code) and
magnetic field lines in the North–South meridional plane. One can clearly see the “closed
magnetosphere” solution. Since thez-components of dipole and interplanetary magnetic
field lines are parallel, there is very little reconnection between terrestrial and IMF field
lines. The reconnection is clearly limited to a topologically zero-measure region connected
to the magnetic poles of the terrestrial dipole—the cusp. This can be seen quite clearly in
Fig. 10, which shows a three-dimensional rendering of the last closed field lines. One can
see that for strong northward IMF the magnetosphere is quite short and there is very little
connection between interplanetary and terrestrial magnetic field lines. This case, and its
sensitivity to numerical parameters, is discussed more fully in [33].
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FIG. 7. Northward IMF case—pressure contours and magnetic-field lines in the north–south plane.

FIG. 8. Northward IMF case—pressure contours in the equatorial plane and the last closed magnetic-field
lines.
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FIG. 9. Southward IMF case—pressure contours and magnetic-field lines in the north–south plane.

FIG. 10. Southward IMF case—pressure contours in the equatorial plane and the last closed magnetic-field
lines.
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Figures 9 and 10 show the results of a simulation where the solar wind parameters were
identical to those in the previous simulation with the exception of the direction of the IMF,
which in this case was purely southward. In these plots, field lines in red are those that end up
in the tail of the magentosphere; all others are colored white. In this southward IMF case,
the result is antiparallel magneticz-components, which leads to magnetic reconnection.
The topology of the magnetosphere is clearly very different from the northward IMF case.
The dipole and interplanetary field lines reconnect at the dayside magnetopause and the
reconnected field lines are convected downstream by the supersonic and superalfv´enic solar
wind plasma flow. On the nightside the field line disconnects at an X-line. This is the “open
magnetosphere” configuration.

7. CONCLUDING REMARKS

A scheme for solving the compressible MHD equations in their symmetrizable form has
been presented in this paper. The scheme is solution-adaptive and based on an approximate
solution to the MHD Riemann problem. Grid-convergence studies were carried out on
smooth and non-smooth problems, validating the accuracy of the scheme. In addition, a
method for splitting off known steady magnetic fields from the solution was presented
and applied in solving for the interaction of the solar wind with a magnetized planet.
The combination of a robust solution method and the solution-adaptive capability yields
a method that is very useful for space physics applications, which are characterized by
disparate scales.
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Méthodes nuḿeriques pour la MHD, 1995.

31. A. Harten, High-resolution schemes for hyperbolic conservation laws,J. Comput. Phys.49, 357 (1983).

32. T. Tanaka, Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulations
of inhomogeneous systems including strong background potential field,J. Comput. Phys.111, 381 (1994).

33. T. I. Gombosi, D. L. DeZeeuw, C. P. T. Groth, K. G. Powell, and P. Song, The length of the magnetotail for
northward IMF: Results of global 3D MHD simulations,Phys. Space Plasmas15 (1998).


	1. INTRODUCTION
	2. GOVERNING EQUATIONS
	3. ELEMENTS OF SOLUTION SCHEME
	FIG. 1.

	4. SOLVING FOR FLOWS WITH EMBEDDED STEADY FIELDS
	5. VALIDATION OF SCHEME
	FIG. 2.
	FIG. 3.
	FIG. 4.
	TABLE I
	FIG. 5.
	TABLE II
	FIG. 6.
	TABLE III

	6. SOLAR-WIND/MAGNETIZED PLANET INTERACTION RESULTS
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.

	7. CONCLUDING REMARKS
	REFERENCES

