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This paper presents a computational scheme for compressible magnetohydrody-
namics (MHD). The scheme is based on the same elements that make up many
modern compressible gas dynamics codes: a high-resolution upwinding based on
an approximate Riemann solver for MHD and limited reconstruction; an optimally
smoothing multi-stage time-stepping scheme; and solution-adaptive refinement and
coarsening. In addition, a method for increasing the accuracy of the scheme by sub-
tracting off an embedded steady magnetic field is presented. Each of the pieces of
the scheme is described, and the scheme is validated and its accuracy assessed by
comparison with exact solutions. Results are presented for two three-dimensional
calculations representative of the interaction of the solar wind with a magenetized
planet. @ 1999 Academic Press

1. INTRODUCTION

Many flows, particularly astrophysical flows, are electrically conducting, and the ele
tromagnetic forces in these flows can be of the same order as, or even greater thar
hydrodynamic forces. The governing equations of magnetohydrodynamics (MHD) are
ten used for conducting flows in which relativistic effects are unimportant and the continu
assumption is valid. These governing equations, which basically merge the Euler equat
of gas dynamics with the Maxwell equations of electromagnetics, have long been stuc
for their elegant yet complicated structure.

Solving the MHD equations computationally entails grappling with a host of issues. T
ideal MHD equations—the limit in which viscous and resistive effects are ignored—ha
a wave-like structure analagous to, though substantially more complicated than, ths
the Euler equations of gas dynamics. The ideal MHD equations exhibit degeneracies
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type that do not arise in gas dynamics and also, as they are normally written, have an a
constraint of zero divergence of the magnetic field.

Because astrophysical flows are highly compressible, Godunov-type techniques ap
to be an attractive approach for this class of problem. Thus, beginning with the work of B
and Wu [1] and Zachary and Colella [2], the development of solution techniques for the id
MHD equations based on approximate Riemann solvers has been studied. In both of t
references, a Roe-type scheme for one-dimensional ideal MHD was developed and stu
Roe and Balsara [3] proposed a refinement to the eigenvector normalizations develop
the previous work, and Dai and Woodward [4] developed a nhonlinear approximate Riem
solver for MHD. Other approximate Riemann solvers were also developed by Crois
etal.[5] (akinetic scheme) and by Linde [6] (an HLLE-type scheme). In addition, Myong [
made an in-depth study of the MHD Riemann problem, amith &hd Odstrcil [8] compared
various schemes for MHD.

One of the issues that remains to be resolved for this class of schemes for ideal MH
the method by which th& - B constraint is enforced [9]. One approach is that of a Hodg
projection, in which the magnetic field is split into the sum of the gradient of a scalar a
the curl of a vector, resulting in a Poisson equation for the scalar, such that the constrai
enforced (see, for example, [10]). Another approach is to employ a staggered grid, suc
that used in the constrained transport technique [11]. Hybrid methods that used constre
transport combined with a Godunov scheme have also been recently developed [12]. Ii
work presented here, an alternative method is put forward. The ideal MHD equations
solved in their symmetrizable form. This form, first derived by Godunov [13], allows tt
derivation of an approximate Riemann solver with eight waves [14]. The resulting Rieme
solver, described in detail in this paper, maintains zero divergence of the magnetic fiel
necessary initial condition) to truncation-error levels, even for long integration times.

In the following sections, the governing equations are given in the form used here, an
eight-wave Roe-type approximate Riemann solver is derived from them. A solution-adap
scheme with the approximate Riemann solver as its basic building block is described
validated for several cases. In addition, a method for subtracting out an embedded st
magnetic field is described and used in solving for the interaction of the solar wind witl
magnetized planet.

2. GOVERNING EQUATIONS

The governing equations for ideal MHD in three dimensions are statements of

conservation of mass (1 equation)
conservation of momentum (3 equations)
Faraday'’s law (3 equations), and
conservation of energy (1 equation)

for an ideal, inviscid, perfectly conducting fluid moving at non-relativistic speeds. The
eight equations are expressed in terms of eight dependent variables:

o density (),

e X-, Y-, andz-components of momentumy, pv, andpw),
e X-, y-, andz-components of magnetic field{, By, andB,),
e and total plasma energ¥j],
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where
u-u B-B
E=pe+p—+—. 1
pe+p——+ 2o 1)
In addition, the ideal-gas equation of state
p
- e 2
(y = Dp @

is used to relate pressure and energy, and éneip law is used to relate magnetic field and
current density.

The ideal MHD equations, in the form they are used for this work, are given belo
Vinokur [15] has carried out a careful derivation, including effects of non-idealities, th
goes beyond what is given here.

2.1. Conservation of Mass
The conservation of mass for a plasma is the same as that for a fluid, i.e.,

ap
HJFV (pu) = 0. A3)

2.2. Faraday’s Law

In a moving medium, the total time rate of change of the magnetic flux across a gi\
surfaceS bounded by curvéSis [16]

/ .dS= /— ds+7(5xu.d|+/v.8u-ds, (4)
S

where the third term on the right-hand side arises from the passage of the Sittiacegh
an inhomogeneous vector field in which flux lines are generated. Using Stokes’ theor
and the fact thaE’ is zero in the co-moving frame, Faraday’s law,

d
B- E'.dl
dt/ dS= - d (5)
becomes
% + V. (@uB —Bu)=—-uV-B. (6)

ot

The termuV - B, which is typically dropped in the derivation due to the absence of magne
monopoles, is kept here for reasons to be discussed in Subsection 2.8.

2.3. Conservation of Momentum

Conservation of momentum in differential form is

d(pw)
ot

+ V. (puu+ pl)=j xB. (7
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Under the assumptions of ideal MHD, Aig’s law is

, 1
j=—VxB, (8)

Ko
wherepug is the permeability of vacuum. Thus, conservation of momentum for ideal MH
can be written

d(pw)
ot

+V-(puu+p|):i(VxB)xB. (9)
Mo

Rewriting Eq. (9), using a vector identity fo¥ x B) x B, gives

9 B.-B BB 1
(pU)+V~(pUU+(p+ )l——):——BV.B. (10)
at 210 Mo Mo

As with Faraday’s law, a term proportional ¥ - B is retained for reasons discussed in
Subsection 2.8.

2.4. Conservation of Energy

Conservation of hydrodynamic energy density,

u-u
Eng = pe+ ,OT (11)

u-u

for a fixed control volume of conducting fluid is given by

9E .
TM-FV'(U(Ehd"‘p)):J -E. (13)

Using Ampere’s law and the identity
ExB=(B-B)u—(u-B)B,
thej - E term can be expressed in termaucdndB as

j-E:i 8.8 W BV.B_V.(B Bu—@u-BB|.
Ho ot

Finally, defining the total energy density of the plasma

B.
E =Eng+ (14)
20
p u-u B-B
= 15
172 1 o (15)

the energy equation becomes

8E+V~KE+p+B'B)u—1(u~B)B}=—1(u-B)V-B. (16)
at 210 Mo Mo
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2.5. Non-dimesionalization

It is usual to non-dimensionalize the ideal MHD equations, using, for exarhp(e,
reference lengthy,, (the free-stream ion-acoustic speed), apdthe free-stream density).
In addition, the current and magnetic field are scaled yyiffy, which results in the removal
of ug from the equations. This non-dimensional scaled form of the equations is used fr
this point on in this paper.

2.6. Quasilinear Form of Equations

For the eigensystem analysis necessary to develop the Riemann solver, it is convel
to write the governing equations as a quasilinear system in the primitive variables,

W = (107 u9 v, w, BX7 By, BZ’ p)T‘ (17)
The primitive variables can be related to the vector of conserved variables
U = (p, pu, pv, pw, By, By, B;, E)T (18)

by the Jacobian matrices

1 0 0o 0 0 O 0 O]
u p O 0O O 0O O O
v 0 p 0O 0O O O O
JU w 0 0 p O O O O
w=-l0 0 0o 0 1 0 0 o0 (19)
0O 0 0 0 O 1 0 O
O 0 0 0 0O O 1 O
_% pu pv pw By By B ﬁ_
1 0 0 0O 0 0 O 0 |
—u 10 0 0 0 O 0
P P
-2z o ¥ o o 0 O 0
p p
w w 1
aa_uz -z 0 0 f 0o 0o 0o o0 | (20)
0 0 0 0 1 0 O 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
| 5Pu-u ku kv kw kB, kB, kB, (y—1)

wherek = (1 —y).
Collecting Egs. (3), (6), (9), and (13), performing the non-dimensionalization, and €
pressing them in terms of primitive variables gives

W
T (Ax. Ay, A;) - VW =0, (21)
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where

fu p 0 0 0 O]
0 o % B 1
P P p
00 u 0 O —% 0 0
Ax=[0 0 0 u 0 0 -2 0
0 0 0O u 0 0 O
0B -B, 0 0 u 0 O
0B, 0 -B,O O wu O
0yp O 0O 0O O O uj
v 0 p O 0O O 0 0
0O v 0 O —% 0 0 O
0O 0 v 0 & o B 1
P ) p

Ay=lo0 o0 0o v 0 O —% 0 (22)
0O -B, B 0O v 0 0 O
O 0 0 O O v 0 O
O 0 B, -B, 0 0 v O
0 0 yp O 0 O 0 wv|
w 0 0 p 0O 0 0 O]
0w 0 0 —'f; 0 0 0
0 0 w 0 O —% 00
A,=l0 0 0 w = 2 o1
0 -B, 0 B, w 0 00
0O 0 -B, B, 0 w 00
0 0 0 0O O 0 woO
0 0 0 yp O O O w|

2.7. Divergence Form of Equations

Collecting Egs. (3), (6), (10), and (16), and applying the non-dimensionalization, t
normalized divergence form

au
-+ SHEES) (23)

may be written, wherdJ is the vector of conserved quantities defined by Eq. (E83%, a
flux tensor,

pu
B:B)| — BB
Fo| Pt P+ , (24)
uB — Bu

u(E+p+22)—(u-BB
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andS is a “source” vector, containing the terms that cannot be expressed in diverge
form:

(25)

2.8. A Note on thév - B Source Term in the Divergence Form

The terms proportional t& - B in Eq. (23) arise solely from rewriting the magnetic-
field terms in the governing equations in divergence form. Eqution (@&h the source
term) is exactly equivalent to Eq. (21). Although for physical fields there are no magne
monopoles, and the source term is therefore zero, dropping the source term from the ane
changes the character of the equations. This has been pointed out previously by God
[13]. He found that the ideal MHD equations written in pure divergence form (i.e., EqQ. (2
withoutthe source term) are not symmetrizable. He further found that the system coulc
rendered symmetrizable only by adding a factor of the constrair® = 0 to each of the
equations, and that the resulting symmetrizable form was that of Eqw{#8)he source
term.

Symmetrizable systems of conservation laws have been studied by Godunov [17]
Harten [18], among others. One property of the symmetrizable form of a system of con:
vation laws is that an added conservation law

da(ps d(pus d(pvs 0 S
(0S) (p)+(pv)+(pw)=0
at aX ay 0z

for the entropys can be derived by multiplying each equation in the system by a fact
and adding the resulting equations. For the ideal MHD equations, as for the gasdyne
equations, the entropy s=log(p/p?). Another property is that the system is Gallilean
invariant; all waves in the system propagate at speetig (for MHD, the possible values
of ¢ are the Alf\én, magnetofast, and magentoslow speeds, described below). Neithe
these properties holds for the MHD system if the source term is ignored.

Eq. (21), or Eq. (23with the source term, yields the following evolution equation
for v .B:

%(V.B)Jrv.(uv.B):o. (26)

This is a statement that the quanfity B/ p satisfies the equation for a passively convectet
scalarg, i.e.,

a
ap PPV - (pug) = 0. (27)

Thus, for a solution of this system, the quanfity: B/p is constant along particle paths
and therefore, since the initial and boundary conditions salisfi3 = 0, the same will be
true for all later times throughout the flow. The only ambiguity arises in regions which &
cut off from the boundaries, i.e., isolated regions of recirculating flow. These can occu
three-dimensional flow fields and do in some of the cases that have been run. In prac
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these regions do not lead to numerical difficulties. This may be due to the fact that
a numerical calculation, these regions are not truly isolated from the outer flow, due
numerical dissipation. Thus, although not connected to the outer flow via a streamline,
magnetic field inside the recirculating region must be compatible with that of the outer flc
This remains to be proven, however.

The downside of the solving the equations in the form given in Eq. (23) is, of course, t
they are not strictly conservative. Terms of or8erB are added to what would otherwise
be a divergence form. The danger of this is that shock jump conditions may not be corre
met, unless the added terms are small, and/or they alternate in sign in such a way the
errors are local, and in a global sense cancel in some way with neighboring terms. ~
downside, however, has to be weighed against the alternative; a system (i.e., the one wi
the source term) that, while conservative, is not Gallilean invariant, has a zero eigenv:
in the Jacobian matrix, and is not symmetrizable.

The approach taken in this paper is therefore to solve the equations in their symmetriz
form, i.e., the form of Eq. (23). As shown previously [14], this form of the equations allov
the derivation of an eight-wave approximate Riemann solver that can be used to constru
upwind solution scheme for multi-dimensional flows. The elements of the solution sche
are described in the following section.

3. ELEMENTS OF SOLUTION SCHEME

3.1. Overview of Scheme

The scheme described here is an explicit, solution-adaptive, high-resolution, upw
finite-volume scheme. In a finite-volume approach, the governing equations in the forn
Eq. (23) are integrated over a cell in the grid, giving

t/ div+l/ V.Fdv= [ sdv (28)
celli 9t celli celli
iy, +f F.AdS=SV, (29)
dt acelli)

whereU; andS are the cell-averaged conserved variables and source terms, respecti
V; is the cell volume, and is a unit normal vector, pointing outward from the boundary
of the cell. In order to evaluate the integral, a quadrature scheme must be chosen; a si
midpoint rule is used here, giving

du; R
E?w+§:FmdS=3w, (30)

faces

where the- - i terms are evaluated at the midpoints of the faces of the cell. The source te
S is proportional to the volume averagef B for a cell. That average is computed by

1 R
V - Beelli = VZB'ndS

I faces
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the equation to be integrated in time is therefore

0

du; . B .
—HFM-+§:F-ndS:—— i > B-Ads (31)

faces faces
u-B

I

The evaluation oF - fi at the interface is done by a Roe scheme for MHD, as described
Subsection 3.5. Other approximate Riemann solvers have been used in the code desc
here, including an MHD version of the HLLE scheme [6]. These solvers are all based on
eigensystem of the symmetric equations, described in Subsection 3.5. The time-integre
scheme for Eqg. (30), the solution-adaptive technique, and the limited reconstruction te
nigue that makes the scheme second order in space are also described in the follo
sections.

3.2. Grid and Data Structure

The grid used in this work is an adaptive Cartesian one, with an underlying tree d
structure. The basic underlying unit is a block of structured grid of arbitrary size.
the limit, the patch could be 1 x 1, i.e., a single cell; more typically, blocks of any-
where from 4x 4 x 4 cells to 10x 10 x 10 cells are used. Each grid block corresponds to.
node of the tree: the root of the tree is a single coarse block of structured grid covet
the entire solution domain. In regions flagged for refinement, a block is divided into eic
octants; in each octanpx, Ay, andAz are each halved from their value on the “parent”
block. Two neighboring blocks, one of which has been refined and one of which has r
are shown in Fig. 1. Any of these blocks can in turn be refined, and so on, building
a tree of successively finer blocks. The data structure is described more fully elsewt
[19]. The approach closely follows that first developed for two-dimensional gas dynam
calculations by Bergegt al. [20-22].

This block-based tree data structure is advantageous for two primary reasons. One i
ease with which the grid can be adapted. If, at some point in the calculation, a partict
region of the flow is deemed to be sufficiently interesting, better resolution of that regi
can be attained by refining a block, and inserting the eight finer blocks that result fr
this refinement into the data structure. Removing refinement in a region is equally e:
Decisions as to where to refine and coarsen are made based on comparison of local
quantities to threshold values. Refinement criteria used in this work are local values of

€= |V -uVv
& = |V x uvVv (32)
€ = |V x B|v/V.

These represent local measures of compressibility, rotationality, and current denisity.
the cell volume; a scaling of this type is necessary to allow the scheme to resolve smc
regions of the flow as well as discontinuous ones [23].

Another advantage of this approach is ease of parallelization: blocks of the grid can ez
be farmed out to separate processors, with communication limited to the boundary betw
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FIG. 1. Example of neighboring refined and unrefined blocks.

a block and its parent [24, 19]. The number of cells in the refinement blocks can be chc
so as to facilitate load balancing; in particular, an octant of a block is typically refined,
that each block of cells in the grid has the same number of cells [19].

3.3. Limited Linear Reconstruction

In order for the scheme to be more than first-order accurate, a local reconstruction r
be done; in order for the scheme to yield oscillation-free results, the reconstruction mus
limited. The limited linear reconstruction described here is due to Barth [25]. A least-squa
gradient is calculated, using the cell-centered values in neighboring cells, by locally solv
the following non-square system for the gradient of kiie component of the primitive



294 POWELL ET AL.

variable vectoW by a least-squares approach

LVW® = f (33)
Ax; Ayy Az AW
c=|: | f=] . (34)
AXN  AYn Azy AW

where

AXj = X — Xo
AYi =VYi — Yo
AZ =27 — 2
AW® = WE — W
| - I
and the points are numbered so that 0 is the cell in which the gradient is being calcula
andi is one ofN neighboring cells used in the reconstruction.
The gradients calculated in this manner must be limited in order to avoid overshoc

A typical choice is a limiter due to Barth [25]. The reconstructed values are limited by
quantity¢® in the following way

WO x) = WK 4+ 0 (x —X) . vW®, (35)
whereg® is given by

® — mi IW® — maxeighbord W®) | [W® — mingeighpord W) |
promn (l’ WO — maxe)(W®)| 7 [WE — minge(W®)| (36)

In the aboveW® is the value of theth component oW at a cell centek, the subscript
neighborgienotes the neighboring cells used in the gradient reconstruction, and the subs
cell denotes the unlimited)(= 1) reconstruction to the centroids of the faces of the cell.

At the interfaces of blocks that are at different refinement levels, states are constructe
two layers of “ghost cells” so that the interface is transparent to the reconstruction descri
above. Since refinement level differences of greater than one are not allowed, there are
two types of ghost cells: those created for a coarse block from values on a neighboring f
block, and those created for a fine block from values on a neighboring coarser block
simple trilinear interpolation is used to construct the values in the ghost cells.

3.4. Multi-stage Time Stepping
The time-stepping scheme used is one of the optimally smoothing multi-stage sche
developed by Van Leegt al. [26]. The generain-stage scheme for integrating Eq. (30)
from time-leveln to time-leveln + 1 is
U@ =uyn (37)
U® = U9 + gatR(UK D), k=1..-m (38)
un+d — ym, (39)
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where

1 A
R=S — v > F-Ads
faces

The multi-stage coefficientg, and the associated time-step constraint are those that g
optimal smoothing of high-frequency error modes in the solution, thereby accelerating c
vergence to asteady state [27]. Typically, the two-stage optimal second-order schemeis
For this schemey; =0.4242,«¢, = 1.0, and the corresponding CFL number used to choos
At is 0.4693. This approach is, of course, only used when steady-state solutions are de:
for unsteady problems, the second-order in time two-step schemeq.5, «x; =1.0) is
used.

3.5. Approximate Riemann Solver

An approximate Riemann solver is used to compute the interface fluxes needed for
finite-volume scheme of Eq. 30. A Roe scheme is used here; it is based on the eigensy
of the matrix

An = (AX7 Ay, AZ) : ﬁ’ (40)

whereAy, Ay, andA; are the matrices in the quasilinear form of the equations (Eq. (21
andn is the normal to the face for which the flux is being computed. For simplicity, th
derivation is done here fdr=X; results for an arbitrarily aligned face can be obtained b
use of a simple rotation matrix.

3.5.1. Eigensystem of the governing equatiorf®r the matrixA - X, there are eight
waves, with their corresponding eigenvalugdeft eigenvectors, and right eigenvectors
r. The eigenvalues are:

e )¢ =U, corresponding to an entropy wave;

e g =U, corresponding to a magnetic-flux wave;

e Aa=U=B,/,/p, corresponding to a pair of Alari waves; and

e Afs=U=xCyg, corresponding to two pairs of magneto-acoustic waves.

The magneto-acoustic speeds are given by

. . 2 2
un [1(re0 s [(rorm ey o)
2 o P P

The eigenvectors corresponding to these waves are unique only up to a scaling fa
A suitable choice of scaling is given by Roe and Balsara [3]; that choice was used in
current work. (Recently, Barth [28] introduced a scaling that is slightly better conditione:
The scaled version of the eigenvectors comes from defining

a2_ 2 2 _ g2
2 S 2 f
= , = 41
“Tg-g “Tg-a @
and
B B
By = ! B, = ———. (42)

\/BZ+ B2
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The scaled eigenvectors are:
Entropy,
)\.e =u
1
|e = 17 01 0» Oa 09 07 01 _g (43)

re=(1,0,0,0,0,0,0,0)".

Magnetic Flux

Alfvén,

Fast

Slowy

Ad=U
lg = (0,0,0,0,1,0,0,0) (44)
rq = (0,0,0,0,1,0,0,0)".

la = U %
0
,Bz ,By /32 ,By )
| (o 0-F2 P o4 0 (45)
= NZEN RN TN
raz(oo—ﬁz By Oi\/7ﬁ2, \/7,3y, > )
Af = U=xCs
afCs g Us
|f = <07:l: 2a2 ’:Fgcsﬂysger, :F@Csﬂzsger,O,
043
, , 46
Zﬁaﬁy Zfaﬁz 2pa2> (46)
re = (pat, £aCs, FasCsPy SgnBy, FasCsPy SgnBy, O,
asy/paBy, as\/paBz, Aty p)T-
)"S - U:i:CS
asCs o
s = (O + 252 , T;Cfﬂysgﬁx, 2 ZCf/nggrBXs s
of
- 47
Sy 5 el zpa2> (47)

s = (pas, asCs, TatCt Py sgrBy, £aCt B, SgnBy, O,
—at/paPy, —at/paps, Ols)/p)T-
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The eigenvectors given above are orthonormal, and, sinces, By, andg; all lie bet-
ween zero and one, the eigenvectors are all well-formed, once these four parameter
defined. The only difficulties in defining these occur wHgf+ BZ =0, in which case
By and B, are ill-defined, and wheB2 + B2=0and B = pa?, in which casexs anda
are ill-defined. The first case is falrly trivighy and 8, represent direction cosines for the
tangential component of the B-field, and in the case of a zero component, itis only impor
to choose so thaﬂ§ + B2 =1. The choice used here is the same as that proposed by B
and Wu [1],

1
V2 V2

An approach for the case in whielg anda ; are ill-defined is outlined by Roe and Balasara
[3]. No special treatment of this type was needed for the cases shown in this paper. Ind
it is shown in [3] that although the linearized Riemann problem has multiple solutions
this case, they all give the same value for the interface flux.

By = (48)

3.5.2. Construction of the flux functionThe flux function used in this work is defined
in the manner of Roe [29] as

8

F-AUL, Ur) = —(F AUL) +F- n(UR))—ZLk(UR—UL)I/\kIRk, (49)
k=1

wherek is an index for the loop over the entropy, divergence,ehlvinagneto-acoustic
waves. The conservative eigenvectors are

W

L =1 50

k=l (50)
U

Rc= — 51

K= (51)

In Eq. (49), the terms denoted with subscriptsand R are evaluated from the face-
midpoint states just to the left and right of the interface, as determined by the limited lini
reconstruction procedure described above. The eigenvalues and eigenvectors are eva
at an “interface” state that is some combination of thand R states. For gas dynamics,
there is a unique interface state (the “Roe-average state”) that Roe has shown exhibits ce
desired properties [29]. For MHD, while some interesting work has been done on find
an analogous state for MHD (see, for example, [30]), a unique, efficiently computa
Roe average is still elusive. In this paper, a simple arithmetic averaging of the primit
variables is done to compute the interface state. Vector variables (velocity, magnetic fi
are averaged component by component.

If a so-called “entropy fix” is not applied to Roe’s scheme, expansion shocks can
permitted [31]. The entropy fix is applied to the magnetosonic waves to bound those eic
values away from zero when the flow is expanding. This is done by replgging Eq. (49)
with |Ai] (for the values ok corresponding to the magnetoacoustic waves only) wiigfe
is given by

|)»k| [Ak| > ‘Sﬂ
A = (52)

5% 8
s,\k C 2 Al < 555,
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where

Sik = max(d(ikr — AkL), 0).

4. SOLVING FOR FLOWS WITH EMBEDDED STEADY FIELDS

For problems in which a strong “intrinsic” magnetic field is present, accuracy can
gained by solving for the deviation of the magnetic field from this intrinsic value. Fc
example, in the interaction of the solar wind with a magnetized planet such as earth,
planetary magnetic field, a strong dipole, dominates the magnetic-field pattern near
earth. Solving for the perturbation from the dipole field is inherently more accurate th
solving for the full field, then subtracting off the dipole field to calculate the perturbatio
This approach, first employed by Tanaka [32], is derived below for the scheme presente
this paper. The derivation here is for a non-rotating body; the technique can be general
for rotating objects.

Given an “intrinsic” magnetic fieldBo, that satisfies

9B _ g
at

V.By=0 (53)

VXB()=O,

the full magnetic field may be written as the sum of the intrinsic field and a deviagign
ie.,

B = Bo + B1. (54)
Nothing in the following analysis assumes tBatis small in relation td,.
Primitive and conservative state vectors based on the perturbation field may be def
as
Wi =(p.u,B. p)'
and

Ui = (p, pu, By, En)T,

where

P u-u B:-B;
E, = .
vy R

Rewriting Eq. (23) in terms of this perturbed state, making no assumptions other than tr
of Eq. (53), gives

88%1 +(V-F)T4+(V-G)T =5, (55)
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where
T
ou
uu BiBi)| — BB
S + (p+ B2 1B1 ’ (56)
uB; — Biu
U(E1+ p+ B5%) — (u- BBy
0
B
S5 =-V-B; u (57)
u-B;
and
O T
G- (Bo - Byl — (BoB1 + B1Bo) ‘ (58)
uBg — Bgu

(Bo-Byu — (u-B1)Bg

The quasilinear form of this split system has exactly the same eigenvalues and primi
eigenvectors as in Subsection 3.5. The flux function for the split system therefore differs fr
that of the original, non-split system only in that the Jacobian matrices relating primitive
conservative variables differ from those of the non-split scheme. Thus, for the split sche
the flux function is

8

(Fl . ﬁ(UlL) +F1- ﬁ(UlR)) — Z le (UlR - UlL)|)"k|le7 (59)
k=1

Fi-A(Uy,Up,) =

NI

where the conservative eigenvectors for the split system are

oW,
Ly =lk——= 60
L k3U1 ( )
oU;
Ry = ——r 61
1 W, k (61)
and
1L 0 0 O 0 0 0 07
u p 0 O 0 0 0 0
vw 0 p 0O 0 0 0 O
U, w 0 0 p O 0 O 0
ow, [0 0 0 O 1 0 0 0 (62)
0O 0 0 o 0 1 0 0
0O 0 0O o 0 0 1 0
|5% pu pv pw By By By, ﬁ_
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o1 0 0 0 O 0 0 0 7
- % 0 0 O 0 0 0
- 0o o0 o 0 0 0
W, | - 0 0 2 O 0 O 0 63)
U, 0 000 1 0 o0 o |
0 0 0 0 O 1 0 0
0 0 0 0 O 0 1 0
[“>2u-u ku kv kw kB kBy, kB (y —1)]

wherek = (1-y).

5. VALIDATION OF SCHEME

For the purposes of validation and accuracy assessment, smooth and non-smooth |
lems with exact solutions were simulated with the method presented in this paper, anc
computed solutions for several grids were compared with the exact solutions. The res
of the validation runs are presented here.

5.1. Attached Oblique Shocks

Two oblique shock cases were studied: in one, the magnetic field and velocity vect
upstream of the shock are taken to be parallel; in the other, they are perpendicular to
other. For both cases, the acoustic Mach nunMet 5, the Alfvén numbeM =5, and
y =5/3 were taken as the upstream conditions. For both cases, flow past a wedge
computed by the method presented in this paper. The problem is depicted in Fig. 2. St
polars (i.e., plots of post-shock vertical versus post-shock horizontal velocity componel
were constructed by varying the wedge angle and plotting the downsYgaensus down-
streamVy for several wedge angles with the two upstream conditions. Exact shock pol
were computed by iteratively solving the appropriate MHD Rankine—Hugoniot relatior
Figure 3 is a plot of the exact (solid lines) and computed (symbols) shock polars for the
cases. As is clear from the plot, the agreement is excellent.

In order to assess order of accuracy of the method for non-smooth flows, a single
(M =5, Mp=5, 10 wedge, upstream magnetic field, and velocity parallel) was run on

=
It
o
N
.
A
.
<
<

]
a
N
<

FIG. 2. Setup of oblique-shock validation case.
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FIG. 3. Computed and exact shock polars.

sequence of successively finer uniform grids. Limited reconstruction was turned off, so
expectation is of first-order accuracy. Relative errors were calculatedinaorm defined
as

1 N
=

whered!" is the relative error in cell of some quantity;. For example, relative errors of
pressure and magnetic field magnitude are

sP = Pi — Pexact (64)
l Pexact
B — B

B exact. 65

l Bexact (63)

To assess the ability of the scheme to maintainB = 0, the relative error

ShV B _ ffcelll B”ds
ffcelll |Bn|dS

was calculated, wher8, is the component of the magnetic field normal to a cell face
computed by averaging the values at the cell centroids to the “left” and “right” of the fa
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FIG. 4. Grid convergence for oblique-shock validation case.

centroid. This error is denoted BY - B because it scales as

V|V B

](SihV‘B| x ,
AB|

whereV is the cell volume and\ is the cell surface area; the raty A goes as the mesh
spacingh.

Figure 4 shows grid-convergence results for pressure, magnetic-field magnitude,
divergence of magnetic field. The tabulated values are shown in Table I. Both the |
and the table show an imputed order of accuracy of one, as expected. In addition,
interesting to note that the error itV - B not only converges at the same rate as the errc

TABLE |

Grid Convergence for Oblique-Shock Validation Case

L? LB Lhv-B Resolution
0.2022690 0.1072600 0.00301172 /16
0.130427 0.0700573 0.00143521 /32
0.0789827 0.0422129 0.000676634 /64
0.0449624 0.0239818 0.00032158 /128
0.0242786 0.0131832 0.000155886 /2%6

0.0127462 0.00727291 0.0000766793 /512
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X

FIG.5. Structure ofV - B truncation error—magnified view of a portion of a captured shock.

in other variables, it is on each grid more than an order of magnitude lower than the e
in the magnetic field. The bad news here is that, sin¢eB is first order,V - B itself is
constant with grid refinement. However, this is, perhaps, to be expected. For any obli
discontinuity, the three terms comprisiig- B will each be non-zero and of ordey A,
and will not cancel perfectly. Since, as can be seen from examining the multi-stage sch
(Subsection 3.4), the term added in updating the conserved variables is proportion:
AtV - B, andAt =~ h (from the CFL condition), comparing thHev - B term to the relative
error in the magnetic field itself is appropriate.

Itis also interesting to note the structure of #eB errors. The only non-zero values are
in the vicinity of the shock. Figure 5 shows contoursvofB in the vicinity of the shock;
positive values are denoted by solid countrours; negative values are denoted by da
contours. The extent of the contours of non-zero divergence is less than five cells aci
typical of numerical oblique shock structures.

As can be seen, the - B that is created numerically does not appear as isolated magne
monopoles; any positive - B that is created is paired with a negative contribution. Thit
plot, and the fact that the far-field boundary conditions are divergence-free, suggest a “t
scoping” property: integration &f - B over successively larger control volumes should lea
to successively smaller values. Define

N
Tve =, / / B, ds
i=1 control volumei

whereN is the number of control volumes into which the grid is divided. This telescopir
property can be studied by taking succesively larger control volumes for the same solut
In Table Il the quantityXy.g is reported for successively larger control volumes: level
corresponds to taking each cell in the grid as a control volume, level 8 to a control volu

’
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TABLE Il
Telescoping of Magnetic-Field Divergence on a Set of Consecutively Coarsened Grids

Level 9 8 7 6 5 4 3 2 1

Typx1C 1670 1569 1220 0.846 0543 0373 0.234 0.028 0.011

consisting of eight control volumes from level 9, and so on up to level 1, where the cont
volume is the entire computational domain.

5.2. Weber-Davis Flow

Weber—Davis flow is a smooth solution to the ideal MHD equations approximating t
solar wind in the equatorial plane of the interplanetary medium [11]. While a comple
analytic solution for this flow does not exist, certain quantities, including

by = ,ovrl’2 (66)
®g = Br? (67)
are invariant. Thus, the method presented in this paper can be validated by calculating

degree to whichby, and®g remain constant. The, norms of the relative errors ifg,
@)y, and magnetic-field divergence are plotted in Fig. 6 and Table 11l for various levels

12 1.3 14 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
—log(h)

FIG. 6. Grid convergence for Weber—Davis test case.
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TABLE 11l
Various Levels of Grid Resolution
LM Ly® Lhv-8 Resolution
0.0314475 0.042268 0.0030893 /1B
0.0087872 0.0134876 0.000889703 /32
0.00190635 0.0039304 0.000164449 /64
0.000444465 0.00098265 0.000029798 /128

grid resolution; the results show second-order accuracy. Again, as in the non-smooth f
the divergence error is more than an order of magnitude smaller than the errors in o
variables.

6. SOLAR-WIND/MAGNETIZED PLANET INTERACTION RESULTS

Results are presented here for the interaction of the solar wind—a mixture of electrc
protons, helium atoms, and minor ions—with a magnetized sphere representative of E
This problem is a rather comprehensive test of the method described in this paper.
incoming flow that has a background magnetic field associated with it—the interplanet
magnetic field IMF—interacts with the magnetic dipole associated with Earth. The result
flow field is a complicated balance of thermal, kinetic, and magnetic effects.

In the simulations presented here, the incoming solar wind is modeled as a 400 km/s
with a density of 5 molecules/cinan ion-acoustic speed of 50 km/s and a magnetic fiel
strength of 108 Tesla. In the first case, the magnetic field is northward; in the second
is southward. The earth is modeled as a magnetic dipole of strengt03® Teslax RE,
whereRg is the radius of the earth. The numerical boundary conditions are free-stream
solar wind conditions on all external boundaries, and at a sphere of reRiyuth@ following
(non-dimensional) conditions are applied

p=1 u=0 B =0 p=8 (68)

A Neumann condition is applied on the other two components of the magnetic field.

Figures 7 and 8 show the converged steady-state solution for a strongly northwarc
terplanetary magnetic field (IMF). The magnetic-field vector in the free-streaming so
wolar wind is antiparallel to the terrestrial magnetic dipole moment, consequently |
z-components of the dipole field lines and the IMF are parallel. Such a situation rep
sents fairly extreme interplanetary field conditioBs {s too large), but it demonstrates the
“closed magnetosphere” solution. Figure 9 shows the thermal pressure (color code)
magnetic field lines in the North—South meridional plane. One can clearly see the “clo
magnetosphere” solution. Since thieomponents of dipole and interplanetary magnetic
field lines are parallel, there is very little reconnection between terrestrial and IMF fie
lines. The reconnection is clearly limited to a topologically zero-measure region connec
to the magnetic poles of the terrestrial dipole—the cusp. This can be seen quite clear
Fig. 10, which shows a three-dimensional rendering of the last closed field lines. One
see that for strong northward IMF the magnetosphere is quite short and there is very |
connection between interplanetary and terrestrial magnetic field lines. This case, an
sensitivity to numerical parameters, is discussed more fully in [33].



POWELL ET AL.

Pressure

15.3231
12.4361
9.54915
6.66216
3.77518
0.888192

Pressure
27.2016

11.3975
| 8.76352
6.1295
3.49549
0.861481

FIG. 7. Northward IMF case—pressure contours and magnetic-field lines in the north—-south plane.

FIG. 8. Northward IMF case—pressure contours in the equatorial plane and the last closed magnetic-
lines.
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FIG.9. Southward IMF case—pressure contours and magnetic-field lines in the north—south plane.

FIG. 10. Southward IMF case—pressure contours in the equatorial plane and the last closed magnetic
lines.
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Figures 9 and 10 show the results of a simulation where the solar wind parameters v
identical to those in the previous simulation with the exception of the direction of the IM
whichin this case was purely southward. In these plots, field lines in red are those that en
in the tail of the magentosphere; all others are colored white. In this southward IMF cé
the result is antiparallel magneteecomponents, which leads to magnetic reconnectior
The topology of the magnetosphere is clearly very different from the northward IMF ca
The dipole and interplanetary field lines reconnect at the dayside magnetopause an
reconnected field lines are convected downstream by the supersonic and sepératiléar
wind plasma flow. On the nightside the field line disconnects at an X-line. This is the “op
magnetosphere” configuration.

7. CONCLUDING REMARKS

A scheme for solving the compressible MHD equations in their symmetrizable form f
been presented in this paper. The scheme is solution-adaptive and based on an approx
solution to the MHD Riemann problem. Grid-convergence studies were carried out
smooth and non-smooth problems, validating the accuracy of the scheme. In additio
method for splitting off known steady magnetic fields from the solution was present
and applied in solving for the interaction of the solar wind with a magnetized plan
The combination of a robust solution method and the solution-adaptive capability yie
a method that is very useful for space physics applications, which are characterizec
disparate scales.
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